Cancer Communications
indexed by SCI
BMC

doi: 10.5732/cjc.013.10195
Detecting the spectrum of multigene mutations in non-small cell lung cancer by Snapshot assay
Jian Su, Xu-Chao Zhang, She-Juan An, Wen-Zhao Zhong, Ying Huang, Shi-Liang Chen, Hong-Hong Yan, Zhi-Hong Chen, Wei-Bang Guo, Xiao-Sui Huang, Yi-Long Wu
Medical Research Center of Guangdong General Hospital; Guangdong Lung Cancer Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P. R. China.
[Abstract] As molecular targets continue to be identified and more targeted inhibitors are developed for personalized treatment of non-small cell lung cancer (NSCLC), multigene mutation determination will be needed for routine oncology practice and for clinical trials. In this study, we evaluated the sensitivity and specificity of multigene mutation testing by using the Snapshot assay in NSCLC. We retrospectively reviewed a cohort of 110 consecutive NSCLC specimens for which epidermal growth factor receptor (EGFR) mutation testing was performed between November 2011 and December 2011 using Sanger sequencing. Using the Snapshot assay, mutation statuses were detected for EGFR, Kirsten rate sarcoma viral oncogene homolog (KRAS), phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), v-ras neuroblastoma viral oncogene homolog (NRAS), dual specificity mitogen activated protein kinase kinase 1 (MEK1), phosphatase and tensin homolog (PTEN), and human epidermal growth factor receptor 2 (HER2) in patient specimens and cell line DNA. Snapshot data were compared to Sanger sequencing data. Of the 110 samples, 51 (46.4%) harbored at least one mutation. The mutation frequency in adenocarcinoma specimens was 55.6%, and the frequencies of EGFR, KRAS, PIK3CA, PTEN, and MEK1 mutations were 35.5%, 9.1%, 3.6%, 0.9%, and 0.9%, respectively. No mutation was found in the HER2, NRAS, or BRAF genes. Three of the 51 mutant samples harbored double mutations: two PIK3CA mutations coexisted with KRAS or EGFR mutations, and another KRAS mutation coexisted with a PTEN mutation. Among the 110 samples, 47 were surgical specimens, 60 were biopsy specimens, and 3 were cytological specimens; the corresponding mutation frequencies were 51.1%, 41.7%, and 66.7%, respectively (P = 0.532). Compared to Sanger sequencing, Snapshot specificity was 98.4% and sensitivity was 100% (positive predictive value, 97.9%; negative predictive value, 100%). The Snapshot assay is a sensitive and easily customized assay for multigene mutation testing in clinical practice.
Chinese Journal of Cancer 2014, Volume: 33, Issue 7, Page: 346-350
[ PDF Full-text ]
[ Html full-text ](PubMed Central)

[ PubMed ]

[Google Scholar]


Cite this article

Jian Su, Xu-Chao Zhang, She-Juan An, Wen-Zhao Zhong, Ying Huang, Shi-Liang Chen, Hong-Hong Yan, Zhi-Hong Chen, Wei-Bang Guo, Xiao-Sui Huang, Yi-Long Wu. Detecting the spectrum of multigene mutations in non-small cell lung cancer by Snapshot assay. Chin J Cancer. 2014, 33(7):346-350. doi:10.5732/cjc.013.10195


Export citations

EndNote


SHARE THIS ARTICLE


Your Comments

  

 


Comments:


CJC Wechat 微信公众号


 

Editorial Manager


CC adopts ScholarOne Manuscripts to manage its submissions from Nov.1, 2019

 Submission Guidelines  

 

Reference style for  

 EndNote,
 Reference Manager



Editorial Manager


 

Year:

 

Month:

Advanced search

Subscription


CC is now published by Wiley

© Cancer Communications

651 Dongfeng Road East, Guangzhou 510060, P. R. China