In the last decades of years, the incidence and mortality of tumors were increasing worldwide\cite{1}. Although many progressions of antitumor therapies have been made, most tumor patients still cannot be cured, and are prone to recurrence and metastasis. In addition, the patients with malignant tumors always have short survival time and poor life quality. The identification of human cancer stem cells (CSCs) brought a hope for us\cite{2}. Searching for specific surface markers to sort CSCs is the key to further investigate tumorigenesis, metastasis, recurrence and prognosis of tumors. Many studies suggested that CD133 was a specific surface marker for stem cells and CSCs. In this article, the important roles of CD133 in studies on stem cells and CSCs were reviewed.

CD133

Origins of CD133, AC133 and Prominin-1

Yin et al. \cite{3} firstly separated and identified the human CD133 from CD34\textsuperscript{bright} hemopoietic stem cells using the artificial AC133 monoclonal antibody. In the same year, Weigmann et al. \cite{4} separated and identified Prominin-1 from mouse neuroepithelium stem cells. Due to the distinctly prominent structure on cell membrane surface, Prominin-1 was named according to the latin word ‘prominere’ which namely represents the meaning of ‘prominent’. The CD133 was called as human Prominin-1 by some scholars. The molecular structure of human CD133 is similar to that of mouse Prominin-1, and about 60% of amino acid sequences are consistent between them. However, their tissue distributions are not identical\cite{5,6}. Whether they have completely identical function is under investigation.

Structure

Human CD133 gene consisting of at least 37 exons is located in chromosome 4, and its length is about 152 kb\cite{7,8}. The CD133 protein, a member of cell membrane protein superfamily, is a glycoprotein consisting of 865 amino acids, and its molecular weight is about 120 kDa\cite{3}. The molecular structure of CD133 includes one extracellular NH\textsubscript{2}-terminal, two big extracellular annuli, five membrane spanning domains, two small intracellular annuli containing rich cysteines and one intracellular -COOH structure (Figure 1).

Transcriptional regulation

The human CD133 gene contains at least 9 different exons in
the 5′-untranslated region (UTR), which lead to the generation of 7 kinds of 5′-UTR typing mRNA at least. Moreover, the mRNA expression shows a tissue-dependent pattern. The transcriptions of these subtypes of mRNA are regulated by 5 promoters (P1–P5). Through the luciferase reporter system, it was found that the activities of P1 and P2 promoters remarkably increased, and the activities of P3, P4 and P5 did not change obviously. In addition, the promoter activity could be inhibited by the methylation in vitro, suggesting that methylation might play a certain role in the regulation[8]. The recognition of tissue-specific promoter of CD133 provides an effective method for specifically sorting stem and precursor cells.

**Subtypes**

CD133 is divided into two subtypes: CD133-1 and CD133-2. The CD133 reported firstly was named as CD133-1. Yu et al.[9] separated and identified AC133-2 (CD133-2). The difference between the two subtypes is that, in the process of mRNA splicing, the deletion of a small exon (exon 4) containing 27 nucleotides leads to the loss of 9 amino acids at the NH2 terminal outside cell membrane. The CD133-2 mRNA is predominant in many kinds of fetal and adult tissues, while the CD133-1 mRNA is predominant in fetal brain and adult skeletal muscle, but cannot be detected in the fetal liver and kidney, adult pancreas, and so on. Therefore, it is suggested that CD133-1 and CD133-2 might play different roles in fetal development and organ maturation process.

**Sorting of stem cells and cancer stem cells**

Using specific cell surface molecule as marker, the separation and sorting of stem cells or CSCs are the basis for further investigations. Currently, the sorting technologies are divided into two categories: magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS). In MACS, the monoclonal antibody against CD antigen is used as primary antibody and incubated with single cell suspension. Then, the immunomagnetic bead-labeled secondary antibody is incubated with the above single cell suspension. Through a special magnetic field of magnetic beads, the stem cells or CSCs are adsorbed in a magnetic sorting column, and are finally eluted and collected[9]. In FACS, the sorting is performed mainly through the specific proteins (such as CD molecules, and so on) expressed on the surface of stem cells or precursor cells, or the up-regulated or down-regulated proteins in stem cells. The single cell suspension is labeled by the monoclonal antibody that labeled by one or more than two kinds of fluorescein (such as FITC, PE, and so on) with different excitation wavelength to sort stem cells or CSCs[9].

**CD133 and stem cells**

Since Yin et al.[3] firstly reported that CD133 molecule existed in CD34+ human hemopoietic stem cells, CD133 became a distinct molecular marker in identification and separation of stem and precursor cells due to its characteristic of down-regulated expression in differentiated cells. de Wynter et al.[10] and Gordon et al.[11] found that CD133+/CD34- cells had higher clonogenicity and transplantation success rate than CD133+/CD34- cells. Gallacher et al.[12] reported that, in CD34+/CD38- cell population in human cord blood, CD133+ cells were the unique subpopulation which could form CD34+ cells. Moreover, compared with CD133- cells, CD133+ cells had more than 400 folds of transplantation capability in NOD/SCID mice. Lang et al.[13] found the advantage of CD133+ cells in human gene allotransplantation. Subsequently, Bitan et al.[14] reported 5 cases of transplantation using CD133+ stem cells from non-matching donors, and the lethal acute and chronic graft versus host reaction (GVHD) were avoided.

Likewise, as the surface characteristic molecule of stem cells and precursor cells, CD133+ has been extensively reported in other cells fields outside the hematological system, including endothelial precursor cells[15], fetal brain stem cells[16], embryonic epithelial cells[17], prostate epithelial stem cells[18], muscle cells[19], and so on.

**CD133 and cancer stem cells**

At the earliest, the cancer stem cell theory came from a hypothesis 150 years ago[20]. According to this theory, a small subpopulation of cells exist in tumor cells, and this subpopulation of cells have stem cell-like characteristics. For example, CSCs are characterized by self-renewal, infinite proliferation, differentiation potential and high oncogenicity[21]. Recent studies found that stem cells and CSCs had some same specific surface molecular markers such as CD133, nestin, ESA, and so on, which further validated the hypothesis that stem cells existed in tumors.

Singh et al.[22,23] firstly reported that CD133 could be used as a characteristic surface of brain CSCs. They screened out CD133+ cells from brain tumor using CD133 antibody, and found that these cells had very strong capabilities of proliferation, self-renewal and differentiation. Moreover, these cells could differentiate into the tumor which had the same phenotype as the brain tumor.

Olempska et al.[24] found that the expressions of CD133 and ABCG2 were up-regulated in 2 of 5 pancreatic carcinoma cell lines, suggesting that CD133 might be a specific surface molecule of pancreatic CSCs. Hermann et al.[25] also confirmed the existence of CD133+ CSCs in pancreatic cancer tissues. In addition, the CSCs sorted from human colon and liver carcinomas using CD133 marker showed the potentials of self-renewal, differentiation, clone formation and proliferation in vitro. After inoculation into immune deficiency mice, these cells had the capability of re-forming original type of tumor[26,27].

Therefore, more and more experimental evidences support that CD133 might be a specific surface molecule of CSCs, especially solid tumor stem cells, suggesting that CD133 is likely to become an effective target of antitumor therapy. To date, various types of tumors, in which CD133 was reported as a specific marker of CSCs, are listed in Table 1.
CD133 as a potential new therapy target

**CD133, drug-resistance of tumors and regulation of related signal pathways**

One tough problem in tumor therapy is that tumor cells, with stem cell-like characteristics, show various degrees of insensitivity to current chemotherapy or radiotherapy. In the process of treating tumors, a few tumor cells can escape from the effect of antitumor drugs, and may form secondary tumors which have stronger tolerance to existing treatments. CD133+ CSCs, with stem cell-like characteristics, are insensitive to chemotherapy and radiotherapy. Currently, the functions of CD133 have not been fully investigated. Whether the existence of CD133 or the upregulation of CD133 expression is involved in the mechanism of tumor drug-resistance is under investigation in worldwide.

Hambardzumyan et al. reported that the stem cell-like characteristics of CD133+ cell-formed brain tumor might be associated with Notch signal pathway. The block of Notch signal pathway through the inhibition of γ-secretase could inhibit Hes1 expression and promote the apoptosis of brain tumor cells. At the same time, when the Notch-inhibited tumor cell line with high differentiation was re-inoculated into NOD/SCID mice, it could not form a new tumor. Moreover, the block of Notch pathway led to the loss of about 5 folds of CD133+ cells, and weakened their capability of excreting Hoechst dye. In pleomorphic brain glioma with high malignancy, the self-renewal of CD133+ cells may be associated with HEDGEHOG-GLI (HH-GLI) pathway, and express stem cell-specific genes, such as OLIG2, BMI1, BCAN, OCT4, NANOG, PTEN, ABCG2, PDGFRA, SOX2 and NRD1. The block of HH-GLI pathway by SMO siRNA suppresses the proliferation and tumorigenic ability of CD133+ cells, and prolongs the survival time of mice with brain tumor. In comparative drug test, temozolomide, an anti-neuroglioma drug, showed inhibitory effect on cell proliferation, but had no effect on the self-renewal of glioma cells; on the other hand, cyclopamine, a HH-GLI pathway inhibitor, effectively decreased the quantity of tumor cell clones, suggesting that using these two drugs in combination would be more effective for removing CSCs.

Liu et al. investigated the cells collected from glioma patients, and found that the expression levels of nervous precursor cell markers, such as CD90, CD44, CXCR4, and nestin, were higher in CD133+ cells than in CD133- cells. Moreover, in CD133- cells, the anti-apoptosis genes such as Bcl-2, Bcl-xL, FLIP, c-IAP2, XIAP, and NAIP were highly expressed, while the expression of promoting apoptosis gene Bax was down-regulated. In addition, it was reported that the expression of ATP pump related ABCG5 was up-regulated. Frank et al. found that the CD133+/ABCG5+ melanoma was insensitive to Adriamycin. Moreover, the CD133 and ABCG5 were highly expressed in melanoma cells collected from patients, suggesting that they might be key molecules for tumor drug-resistance and become effective therapeutic targets.

**CD133 and stem cell therapy**

CD133 has become a useful specific marker for sorting hemopoietic stem cells. Moreover, accumulating data showed that CD133+ cells may play a more important role in treating stem cell-associated diseases. Bhatia et al. reported that, compared with CD34+ cells, CD133+CD34+ cells could generate the same regeneration potency after transplantation, and could differentiate into CD133+/CD34+ cells. In addition, Lang et al. demonstrated in the early clinical trial that, compared with CD34+ cells, CD133+ cells could slightly improve the state of transplantation. Torrente et al. found that CD133+ cells in circulation could be used in treating muscular dystrophy. Stamm et al. reported that the transplantation of CD133+ bone marrow could improve the function of infarcted myocardium, and the related mechanism might be involved in the aggregation of CD133+ endothelial precursor cells in blood vessels.

**CD133 and tumor targeted therapy**

With the constant deepening of experimental studies toward microcosmic fields and the continuous progression of research methods, more evidences confirmed the existence of CSCs in tumor cells, and CD133 is very likely to become a specific surface marker of numerous CSCs. Because CSCs or CSC-formed secondary tumors are insensitive to chemotherapy or radiotherapy, CD133-targeted therapy will become the new research direction for antitumor therapy. The new therapy research focuses include classical signal pathway specifically targeting certain stem cells, specific block of cell cycle, application of interfering RNA in transcriptional mechanism, specific degradation targeting mitochondrion, and related immunotherapy.
Conclusions

In summary, CD133 will play a very important role in the studies on stem cell-related diseases and CSCs. The specific sorting of stem cells using CD133 as a common cell surface marker of many kinds of tumor will be helpful to investigate biological characteristics, signal transduction pathway, chemotherapy- or radiotherapy-resistant mechanism of CSCs. At the same time, CD133 will probably become a target for tumor targeted therapy, and bring a great breakthrough for tumor therapy. However, some individual reports showed that CD133-colon carcinoma cells also had CSC-like characteristics. Therefore, whether CD133 is a common specific marker of CSCs or there are other specific markers needs to be confirmed by further investigation.

References


